

# 7 Nucleic acids

## 7.1 DNA structure and replication

### Rosalind Franklin's investigation of DNA structure

- most of X-rays pass through an object, but some are scattered by the material's particles: diffraction; as DNA is arranged orderly enough, a diffraction pattern can be seen
- X-ray detector is placed close to the sample to collect the scattered rays
- Franklin develops a high resolution camera containing X-ray film to obtain very clear images
- from the image there are deductions: helical shape, angle of cross shape shows steepness of helix, distance between horizontal bars is 3.4nm, vertical distance between adjacent base pairs in the helix is 0.34nm

### DNA profiling

- variable number tandem repeat (VNTR): short nucleotide sequence that shows variations between individuals in terms of number of repeats
- analysis of VNTR allele combinations can be used in DNA profiling
- paternal lineage is deduced by short tandem repeats on Y-chromosome and maternal lineage by analyzing mitochondrial DNA in single nucleotides at hyper-variable regions

### DNA sequencing

- most commonly fluorescence is used to determine bases of genome
- many copies of DNA, deoxyribonucleotides, enzymes and small quantities of fluorescent deoxyribonucleotides are mixed
- fluorescent markers stop replication at the point they are added, fragments are separated by length and computer evaluates sequence based on color and length

## 7.2 Transcription and gene expression

### The function of the promoter

- only some DNA code for production of polypeptides (coding sequences)
- some non-coding sequences have functions production for tRNA and rRNA
- others play role in regulation of gene expression such as enhancers and silencers
- promoter: sequence located near a gene; binding site of RNA polymerase; is not transcribed but plays a role in transcription

## 7.3 Translation

### tRNA-activating enzymes

- each tRNA is recognized by a tRNA-activating enzyme that attaches a specific amino acid to the RNA using ATP
- activation of tRNA molecule involves attachment of an amino acid to the 3' terminal of the tRNA by tRNA-activating enzyme; twenty different tRNA-activating enzymes that are specific to one of 20 amino acids and the correct tRNA molecule
- active site of the activating enzyme is specific to the correct amino acid and correct tRNA
- when ATP and amino acid are attached to active site of enzyme, amino acid is activated by formation of bond between enzyme and adenosine monophosphate (AMP); activated amino acid is attached to tRNA; energy is later used to link amino acid to growing polypeptide chain